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In this work we prove that the second-kind Fredholm’s integral equations proposed 
by Rallison & Acrivos to solve the deformation and burst of a viscous drop in an 
extensional flow, with viscosity ratio A,  possess a unique continuous solution u(x) for 
any continuous datum F(z) when 0 < h < co. In the original work they could only 
guarantee, analytically, the solvability of the integral equations in a small 
neighbourhood of h = 1. 

1. Introduction 
When drops of one fluid are suspended in a second fluid that is caused to shear, the 

drops will deform and, if the local shear rate is sufficiently large, will break into two 
or more fragments (for a good literature survey see Rallison 1984). 

We consider a viscous drop immersed in a different viscous fluid, with viscosity 
ratio A, which has interfacial surface tension y. The fluid at  infinity is made to flow 
with velocity u?(x) = E,,x, and the drop consequently deforms. The governing 
equations for the fluid velocity u and pressure p are given by the Stokes’ 
equations : 

(1.1) 

where 

-pat5+ A+A forxEQ,, (L, L) (1.2a) 

(1 .2b )  

Here we have normalized the fluid velocity using the viscosity p of the carrying fluid ; 
the drop viscosity is hp. The flow fields have to satisfy the following asymptotic and 
matching conditions : 

u, + u? as 1x1 +- 00 (1 -3) 

and [uIs = 0, [=t5ntl, = y79V.n (1.4) 

where [ Is denotes the jump across the surface of the drop S from the outside a, to 
the inside Q,, n is the outward unit normal and V - n  is the surface curvature. 

A numerical solution for the deformation between near spheres and slender bodies 
has been developed by Rallison & Acrivos (1978); using the Green’s integral 
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representation formulae for the fluids inside and outside the drop they found a 
second-kind Fredholm’s integral equation for the unknown surface velocity u(x) : 

with 

Here 

n r 

is the fundamental singular solution of Stokes’ equations, known as a ‘Stokeslet 
located at the point y, and 

K f j ( x ,  Y) = a$j(J1k e l ) ,  % k ( y )  

When A = 1, (1.5) takes the particular simple form 

P 

(1 .7  

which in fact is valid a t  all points x, not just those on S. 
It is known that the homogeneous form of (1.5) has just one eigensolution when 

h = 0, and if h = co the six rigid-body motions for the drop are all eigensolutions (see 
Ladyzhenskaya 1969, chap. 3). Therefore from Fredholm’s alternative it follows that 
the integral equation (1.5) does not admit a unique solution a t  these two poles of the 
resolvent. Also, it is clear that the resolvent does not have a pole at  h = 1 and 
therefore the same will be true in some small neighbourhood around A = 1. Rallison 
6 Acrivos conjecture that probably there are no eigensolutions for 0 < h < co, since 
their numerical solution encountered no difficulties for the values of h tested in such 
range. In  the next section, we prove, analytically, that the integral equation (1.5) 
possesses a unique continuous solution u(z) for any continuous datum F(x) when 
0 < h < co ; in other words the resolvent of (1.5) does not have a pole in this range 
of A. 

2. Uniqueness of solutions of the integral equation (1.5) 
In order to show that the integral equation (1.5) possesses a unique continuous 

solution u(z)  for any continuous datum F(z) when 0 < h < co it  is sufficient, 
according to Fredholm’s alternative, to show that the following homogeneous system 
(2.1) for y admits only a trivial solution in the space of continuous functions when 
- 1  < @ <  1 :  

(2.1) 

where 

or, equivalently, it is enough to verify that the resolvent of the adjoint homogeneous 
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system to the integral equation (2.1), given below by (2.2), does not have a pole 
betweenp=-1 a n d B =  1 :  

N5)-2BJ K,,(Y95)#,(Y)ds, = 0 for f E S .  

v,W = Js4,(X’ Y) M Y )  a, 9 

(2.2) 
S 

To prove the above statement, we will follow Goursat’s (1964, p. 188) ideas to 
study the poles of the resolvent of the second-kind Fredholm integral equation 
resulting from the Dirichlet boundary condition for the classical potential theory. 

Let us consider the potential of a single layer 

(2.3) 

where # is a non-trivial solution of (2.2). The velocity vector (2.3) together with its 
corresponding pressure is a well-defined and continuous Stokes flow throughout the 
entire space (here it is not necessary to consider the existence of the drop, since we 
are dealing with the solvability of (1.5)), whose surface tension experiences a jump 
across S, and this jump is given by Ladyzhenskaya (1969 p. 56), as 

(2.4a) 

(2.4b) 

The above formulae permit the transformation of (2.2) into the form 

[atj(V)in,-atj(V)enjl+B[arj( V)inj+atj(V)enjl= 0 (2.5) 

for every EES. Here atj( V), is the limiting value of the stress at,( V) when a point x 
tends to a point [ES coming from a,, and at,( V), is the limiting value of the stress 
when x tends to coming from 51,. Equation (2.5) implies that 

(1+p)aij(V)inj = (1-B)gtj(V)enj, 5 ~ s -  (2.6) 

Let us multiply (2.6) by V: = VF and integrate over S: 

where V:  is the limiting value of (2.3) when z tends to ~ E S  coming from a,, and 
VF the limiting value when x tends to 6 coming from Qe, which are identically equal 
owing to the continuity of a single layer potential across the density carrying 
surface. 

Since (2.3) together with its corresponding pressure is a well-defined continuous 
Stokes’ flow throughout the entire space, whose velocity behaves like 1xI-l for large 
1x1 and pressure behaves like I Z I - ~ ,  from Green’s f i s t  identity for Stokes’ equations 
(see Ladyzhenskaya 1963, p. 57) we obtain the following relations : 

(2.8a) 

(2.8b) 
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Hence, in particular, it follows that in (2.7) the integral on the left is non-negative, 
whilst the integral on the right is non-positive. Therefore, such a relation is 
impossible if @ lies between - 1 and + 1, for the factor (1 +/3)/( 1 -@) is then positive, 
and the two integrals are of opposite sign. Then, in this case it would be necessary 
that the two integrals are zero: 

F r 

and from (2.8a, b )  it follows that 

av av 
ax, axg 
L + ~ = o  for X E B U B , ,  (2.10) 

a system which is known to have six linearly independent solutions, corresponding 
to the motion of the fluid as a rigid body. Therefore V(x,#) vanishes throughout 
the space, since such a null field is the only rigid-motion continuous velocity 
compatible with the asymptotic behaviour of (2.3) at infinity, and hence # is also 
identically zero. Therefore, for - 1 < /3 < 1 the integral equation (2.2) admits only 
the trivial solution, or equivalently the integral equation (1.5) possesses a unique 
continuous solution u(x) for any continuous datum F(x) when 0 < A < m. Thus we 
have proved that the deformation and burst of a viscous drop in an extensional flow 
can be solved by solving Rallison & Acrivos second-kind Fredholm’s integral 
equations for any viscous ratio A,  except the A = 0 and h = m cases in which the 
integral equations do not possess a unique solution. 
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